Javascript: Variables & Boolean Logic

Variables

Initialize and assign variables in Javascript
+ Store variables using the prompt function
- Write comments in your JavaScript code

List all of the data types in JavaScript

-+ Compare and contrast primitive data types with objects

iIndex.ntmi

Variable Fundamentals el

<head>
<title>JavaScript Test Site</title>

5 <script src="first.js"></script>
O O] JavaScript Test Site X Eamonn </head>

& C {0 @ file:///Users/edeleastar/repo... ¥¢ f? ‘& /5 E O — <body>
<p>Nothing going on yet.</p>

Nothing going on yet.
</body>
</html>
[w ﬂ Elements Console Sources Network Timeline Profiles » ¢ X CO”SO-Le -LOg("Hi Matt I ||) .
. ’ " ’

© ¥ top v [Preservelog console. log("How are you doing, Matt?");

Hi, Matt! first.is:3 Iconsole. log("See you later, Matt!");

How are you doing, Matt? first.js:4

See you later, Matt! first.js:5

>

- what If we want to change
the person’'s name from
"‘Matt" to something else”

var Keyworad

declare a variable

var firstName = "Matt";

console.log("Hi, " + firstName + "'!");

console. log("How are you doing, " + firstName + "?");
console. log("See you later, " + firstName + "!'");

use a variable

Primitive Data lypes

6 Primitive Data Types

- JavaScript is known
as a ‘weakly" typed
language.

» This means Is that
when you create
variables and assign
them to values, you
do not have to specify
the type of data you
are working with.

// String

var greeting = “hello";
// Number

var favoriteNum = 33:
// Boolean

var 1isAwesome = true;

// undefined
var foo:
var setToUndefined = undefined:

// null
var empty = null;

Strings

// a string 1s a set of characters enclosed 1in quotes.
//A string can be defined using double quotes:
var greeting = "Hello Whiskey”;

// or using single quotes:
var greeeting = 'Hello World';

// 1f We want quotes in a string, we can mix them, keeping them balanced:
var phrase = 'Matt said, "I have not been to Chile", the other day.';

Numbers

//JavaScript numbers can be positive:
var num = 5,

// or negative:
var num = -25;

Decimal Numbers

var piApproximation = 3.14159265;

var x = 1 + 3;

var a = 4.5;

var b = 5.9;

var ¢ = Math.sqgrt(a x a + b x b);
var studentTeacherRatio = / .

Boolean

// A boolean type can only be in one of two states,
// true or false.

var pizzalIsGood = true;
var pizzalIsBad = false;

Undefined

// Any variable that 1s created 1n JavaScript
// that 1s not assigned a value 1s undefined:
var noValue:; // The value here will be undefined

//You can also explicitly set a variable to undefined:
var favoriteFood = "Candy";

// Changed your mind
var favoriteFood = undefined;

Null

// Null 1s not the same as undefined.
It signifies an intentional absense of data.
var secondEmailAddress = null;

't Is Important to remember that null and undefined are
different types in JavaScript

This can be a confusing feature of JavaScript, even for
people who know other programming languages.

The distinction can seem somewnhat arbitrary when you're

first learning the language, but as you get more
comfortable the distinction will become clearer.

Figuring out a variable's type

In JavaScript, we have a keyword called typeof that returns
the type of the variable.

typeof ""; // = "string"

typeof 5; // — "number"

typeof false; // — "boolean"

typeof undefined; // - "undefined"

typeof null; // this is not what we expect,
// 1t returns "object"!

Converting to a string: toString

- The toString method will convert any value which is not
undefined or null Into a string

var num = 5;
var bool = true:

; // II5II;
): // "true";

num.toString()
bool.toString(

Converting to a number using parse

There are several

ways you can convert

a value to a number.

One way is to parse
the number, using
parselnt or

parser

OOk at

oat:

—ach function will

a string from

eft to write and try to

make sense of the

charac

‘ers It sees as

numbe

S.

parseInt("2"); // 2

parseFloat("2"); // 2

parseInt("3.14"); // 3

parseFloat("3.14"); // 3.14
parseInt("2.3alkweflakwe"); // 2
parseFloat("2.3alkweflakwe"); // 2.3
parseInt("w2.3alkweflakwe"); // NaN (not a number)
parseFloat("w2.3alkweflakwe"); // NaN (not a number)

Converting to a number using Number

- This doesn't parse, it simply tries to convert the entire
string directly to a number

umber("2"); // 2

umber("3.14"); // 3.14
umber("2.3alkweflakwe"): // NaN
umber("w2.3alkweflakwe"): // NaN

= = = =

Converting to a number using +

- This doesn't parse, it simply tries to convert the entire
string directly to a number.

+"2%; // 2

+"3.14"; // 3.14
+"2.3alkweflakwe": // NaN
+"w2.3alkweflakwe": // NaN

Boolean Logic

+ Write conditional logic using boolean operators
List all of the falsey values in JavaScript

- Use If/else and switch statements to include conditional
logic In your Javascript code

Explain the difference between == and N Javascript

- Convert between data types explicitly in JavaScript

Conditional Logic

+ An essential par

th

- of writing programs Is being able to execute code

at depends or

certain conditions. For example:

*You want the navigation bar on your website to look different

based on whether or not someone Is logged In

f someone enters their password incorrectly, you want to let
them know; otherwise, you want to log them In

+You 're building a tic-tac-toe game, and want to know whether it's
X's turn or O's turn

»You 're building a social network and want to keep person A from

seeing person

5's profile unless the two of them are friends

var instructor = 'Brenda’':

// we begin with an "1f" statement
// followed by a condition in ()

// and a block of code inside of {}
if (instructor === 'Brenda') {
console. log('Yes!"');

} else {
console. log('No');
s

Always true

Notice that we used a iINstead of =.

- Anytime that we use more than one equals operator (we can

either use == or) we are doing a comparison (comparing
values).

- When we use a single equals operator =, we are doing an
assignment (setting a variable equal to some value).

var favoriteFood = prompt('What\'s your favorite food?');

if (favoriteFood === 'pizza') {

console. log('Woah! My favorite food is pizza too!');
} else {

console.log('That\'s cool. My favorite food is pizza.');
}

In this version, the boolean expression will be true/false
depending on the value entered In ‘prompt’

Difference between “==" and "==="

- Two different operators for comparison: the double and triple
equals.

Both operators check whether the two things being

compared have the same value, but there's one important
difference.

- == allows for type coercion of the values,

does not.

- o understand the difference between these operators, we
first need to understand what is meant by type coercion.

Type Coercion 1

-+ Add a number and a string.

In a lot of programming languages,

this would throw an error, but

JavaScript is more
accommodating

5 + 'hi'; // '5hi’

't evaluates the expression 5 +

"ni" by first coercing 5 into a string,

and then interpreting the "+"
operator as string concatenation.

- SO It combines the strir

g '5" with

the string "ni" into the s

ring "5hi"

Type Coercion 2

- JavaScript expects the
values inside of
parentheses that come

after the keyword if to be
if ('foo') {

booleans. console. log('this will show up!');

I3

f you pass In a value 1 (ull) <

which Is not a boolean, console. log('this won\'t show up!"');

JavaScript will coerce the |}

value to a boolean

according to the rules for
truthy/falsey values
(more on this later)

Type Coercion 3

A very common way to coerce
a stringified number back into

a number.
+'304'; // 304

By prefacing the string with the
plus sign, JavaScript will
perform a coercion on the
value and convert it from a
string value to a number value.

“::“ VS “:::“ again

* l00Sse

'S5"; // true

true; // false
1; // true

null; // true

"true’
true
undefined

== allows for coercion while

* strict

'5';, // false

true; // false

1; // false

null; // false

"true’
true
undefined

doesn't.

If you don't want to have to think about coercion in your

comparisons, stick to

var x = 4;
if (x <= 5) {
console. log('x is less than or equal to five!');

} else {
console. log('x is not less than or equal to five!');

}

Operator Description
== equal to
=== equal value and equal type

- E not equal

Comparison
Opera’[OrS l== not equal value or not equal type

> greater than
< less than
>= greater than or equal to
<= less than or equal to

? ternary operator

Falsey Values

- Some values (aside
from false) are actually
false as well, when
they're used in a
context where
JavaScript expects a
boolean value

Even If they do not have
a "value" of false, these
values will be translated
(or "coerced") to false
when evaluated Iin a
boolean expression.

O Falsey Values In Javascript

0

null
undefined
false

NaN // (short for not a number)

|_ogical Operators

Operator Description Example
&& and (X < 10 && y > 1) is true
|| or (Xx ==5||y==05)Iis false

! not (X ==vY) is true

f-Else

Sometimes you may have more than two conditions to check.

In this case, you can chain together multiple conditions using
else

if (number >= 1000) {

}
}

console. log('Woah, thats a big number!');

else if (number >= 0) {

console. log('Thats a cool number.');

else {

console. log('Negative numbers?! Thats just bananas.');

Switch

Another way to write conditional logic is to use a switch statement.

While these are used less frequently, they can be quite useful when there are
multiple conditions that can be met.

Notice that each case clause needs to end with a break so that we exit the
switch statement.

switch (feeling) A

case 'happy':
console. log("Awesome, Im feeling happy too!);
break;

case 'sa':
console. log('Thats too bad, I hope you feel better soon.');
break;

case 'hungry’:
console. log('Me too, lets go eat some pizza!');
break;

default:

console. log('I see. Thanks for sharing!"');

Modulus Operator

5 % 3 === 2 // true (the remainder when five 1s divided by 3 1s 2)
var num = prompt('Please enter a whole number');
if (num % 2 === 0) {
console. log('the num variable is even!')
} else if (num % 2 === 1) {
console. log('the num variable is odd!"')
} else {

console. log('Hey! I asked for a whole number!');

}

