
Javascript: Variables & Boolean Logic

Variables

• Initialize and assign variables in JavaScript

• Store variables using the prompt function

• Write comments in your JavaScript code

• List all of the data types in JavaScript

• Compare and contrast primitive data types with objects

Variable Fundamentals

• what if we want to change
the person's name from
"Matt" to something else?

console.log("Hi, Matt!"); 
console.log("How are you doing, Matt?"); 
console.log("See you later, Matt!");

first.js

<!DOCTYPE html>  
<html>  
 <head>  
 <title>JavaScript Test Site</title>  
 <script src="first.js"></script>  
 </head>  
 <body>  
 
 <p>Nothing going on yet.</p>  
 
 </body>  
</html>

index.html

var keyword

declare a variable

var firstName = "Matt";  
console.log("Hi, " + firstName + "!");  
console.log("How are you doing, " + firstName + "?"); 
console.log("See you later, " + firstName + "!");

use a variable

Primitive Data Types

• 6 Primitive Data Types

• JavaScript is known
as a "weakly" typed
language.

• This means is that
when you create
variables and assign
them to values, you
do not have to specify
the type of data you
are working with.

// String 
var greeting = “hello";
 
// Number 
var favoriteNum = 33;
 
// Boolean 
var isAwesome = true;
 
// undefined 
var foo;  
var setToUndefined = undefined;
 
// null 
var empty = null;

Strings

// a string is a set of characters enclosed in quotes.
//A string can be defined using double quotes: 
var greeting = "Hello Whiskey”;
 
// or using single quotes: 
var greeeting = 'Hello World';  
 
// if We want quotes in a string, we can mix them, keeping them balanced: 
var phrase = 'Matt said, "I have not been to Chile", the other day.';

Numbers

 
//JavaScript numbers can be positive: 
var num = 5;  
 
// or negative: 
var num = -25;  

Decimal Numbers

var piApproximation = 3.14159265;  
 
var x = 1 + 3;  
var a = 4.5;  
var b = 5.9;  
var c = Math.sqrt(a * a + b * b); 
var studentTeacherRatio = 4 / 1;

Boolean

// A boolean type can only be in one of two states,
// true or false. 
 
var pizzaIsGood = true;  
var pizzaIsBad = false;

Undefined

// Any variable that is created in JavaScript
// that is not assigned a value is undefined: 
var noValue; // The value here will be undefined 
 
//You can also explicitly set a variable to undefined: 
var favoriteFood = "Candy";  
 
// Changed your mind 
var favoriteFood = undefined;  

Null

• It is important to remember that null and undefined are
different types in JavaScript

• This can be a confusing feature of JavaScript, even for
people who know other programming languages.

• The distinction can seem somewhat arbitrary when you're
first learning the language, but as you get more
comfortable the distinction will become clearer.

// Null is not the same as undefined.
It signifies an intentional absense of data. 
var secondEmailAddress = null;

Figuring out a variable's type

• In JavaScript, we have a keyword called typeof that returns
the type of the variable.

typeof ""; // - "string" 
typeof 5; // - "number" 
typeof false; // - "boolean" 
typeof undefined; // - "undefined" 
typeof null; // this is not what we expect,
 // it returns "object"!

Converting to a string: toString

var num = 5;  
var bool = true;  
 
num.toString(); // "5"; 
bool.toString(); // "true";

• The toString method will convert any value which is not
undefined or null into a string

Converting to a number using parse

• There are several
ways you can convert
a value to a number.

• One way is to parse
the number, using
parseInt or
parseFloat:

• Each function will
look at a string from
left to write and try to
make sense of the
characters it sees as
numbers.

parseInt("2"); // 2 
parseFloat("2"); // 2 
parseInt("3.14"); // 3 
parseFloat("3.14"); // 3.14 
parseInt("2.3alkweflakwe"); // 2 
parseFloat("2.3alkweflakwe"); // 2.3 
parseInt("w2.3alkweflakwe"); // NaN (not a number) 
parseFloat("w2.3alkweflakwe"); // NaN (not a number)

Converting to a number using Number

• This doesn't parse, it simply tries to convert the entire
string directly to a number

Number("2"); // 2 
Number("3.14"); // 3.14 
Number("2.3alkweflakwe"); // NaN  
Number("w2.3alkweflakwe"); // NaN

Converting to a number using +

• This doesn't parse, it simply tries to convert the entire
string directly to a number.

+"2"; // 2 
+"3.14"; // 3.14 
+"2.3alkweflakwe"; // NaN 
+"w2.3alkweflakwe"; // NaN

Boolean Logic

• Write conditional logic using boolean operators

• List all of the falsey values in JavaScript

• Use if/else and switch statements to include conditional
logic in your JavaScript code

• Explain the difference between == and === in JavaScript

• Convert between data types explicitly in JavaScript

Conditional Logic

• An essential part of writing programs is being able to execute code
that depends on certain conditions. For example:

• You want the navigation bar on your website to look different
based on whether or not someone is logged in

• If someone enters their password incorrectly, you want to let
them know; otherwise, you want to log them in

• You're building a tic-tac-toe game, and want to know whether it's
X's turn or O's turn

• You're building a social network and want to keep person A from
seeing person B's profile unless the two of them are friends

• Notice that we used a === instead of =.

• Anytime that we use more than one equals operator (we can
either use == or ===) we are doing a comparison (comparing
values).

• When we use a single equals operator =, we are doing an
assignment (setting a variable equal to some value).

var instructor = 'Brenda';  
 
// we begin with an "if" statement
// followed by a condition in ()
// and a block of code inside of {} 
if (instructor === 'Brenda') { 
 console.log('Yes!');  
} else {  
 console.log('No');  
}

Always true

• In this version, the boolean expression will be true/false
depending on the value entered in ‘prompt’

var favoriteFood = prompt('What\'s your favorite food?');  
 
if (favoriteFood === 'pizza') { 
 console.log('Woah! My favorite food is pizza too!');  
} else {  
 console.log('That\'s cool. My favorite food is pizza.');  
}

Difference between “==“ and “===“

• Two different operators for comparison: the double and triple
equals.

• Both operators check whether the two things being
compared have the same value, but there's one important
difference.

• == allows for type coercion of the values,

• === does not.

• To understand the difference between these operators, we
first need to understand what is meant by type coercion.

Type Coercion 1
• Add a number and a string.

• In a lot of programming languages,
this would throw an error, but
JavaScript is more
accommodating

• It evaluates the expression 5 +
"hi" by first coercing 5 into a string,
and then interpreting the "+"
operator as string concatenation.

• So it combines the string "5" with
the string "hi" into the string "5hi"

 
5 + 'hi'; // '5hi' 

Type Coercion 2

• JavaScript expects the
values inside of
parentheses that come
after the keyword if to be
booleans.

• If you pass in a value
which is not a boolean,
JavaScript will coerce the
value to a boolean
according to the rules for
truthy/falsey values
(more on this later)

 
if ('foo') { 
 console.log('this will show up!');  
}  
 
if (null) { 
 console.log('this won\'t show up!'); 
}  

Type Coercion 3

• A very common way to coerce
a stringified number back into
a number.

• By prefacing the string with the
plus sign, JavaScript will
perform a coercion on the
value and convert it from a
string value to a number value.

 
+'304'; // 304 

“==“ Vs “===“ again

5 == '5'; // true 
'true' == true; // false 
true == 1; // true 
undefined == null; // true

== loose === strict

5 === '5'; // false 
'true' === true; // false 
true === 1; // false 
undefined === null; // false

• == allows for coercion while === doesn't.

• If you don't want to have to think about coercion in your
comparisons, stick to ===.

Comparison
Operators

var x = 4;  
if (x <= 5) { 
 console.log('x is less than or equal to five!'); 
} else {  
 console.log('x is not less than or equal to five!');  
}

Falsey Values

• Some values (aside
from false) are actually
false as well, when
they're used in a
context where
JavaScript expects a
boolean value

• Even if they do not have
a "value" of false, these
values will be translated
(or "coerced") to false
when evaluated in a
boolean expression.

0  
""  
null 
undefined 
false 
NaN // (short for not a number)

6 Falsey Values in Javascript

Logical Operators

If-Else

• Sometimes you may have more than two conditions to check.

• In this case, you can chain together multiple conditions using
else

if (number >= 1000) { 
 console.log('Woah, thats a big number!'); 
} else if (number >= 0) { 
 console.log('Thats a cool number.'); 
} else {  
 console.log('Negative numbers?! Thats just bananas.');  
}

Switch
• Another way to write conditional logic is to use a switch statement.

• While these are used less frequently, they can be quite useful when there are
multiple conditions that can be met.

• Notice that each case clause needs to end with a break so that we exit the
switch statement.

switch (feeling) { 
 case 'happy':  
 console.log("Awesome, Im feeling happy too!); 
 break;  
 case 'sa':  
 console.log('Thats too bad, I hope you feel better soon.');  
 break;  
 case 'hungry':  
 console.log('Me too, lets go eat some pizza!'); 
 break;  
 default:  
 console.log('I see. Thanks for sharing!'); 
}

Modulus Operator

5 % 3 === 2 // true (the remainder when five is divided by 3 is 2) 
 
var num = prompt('Please enter a whole number'); 
if (num % 2 === 0) { 
 console.log('the num variable is even!')  
} else if (num % 2 === 1) { 
 console.log('the num variable is odd!')  
} else {  
 console.log('Hey! I asked for a whole number!'); 
}

